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Abstract 

On a compact Riemannian spin manifold we give new lower bounds for the eigenvalues of the 
Dimc operator in terms of the curvature and of the norm of an appropriate endomorphism of the 
tangent bundle. As a corollary, one gets all known results in this direction. The limiting-case is 
then studied. 
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1. Introduction 

T. Friedrich [Fr 1 ] proved with the help of the Lichnerowicz formula [Li 1 ] that, on 
a compact Riemannian spin manifold (Mn,g) of dimension n >_ 2, any eigenvalue A of 
the Dirac operator satisfies 

,~2 > n inf S,  (*) 
- 4 ( n -  1) M 

where S is the scalar curvature of (Mn, g). In 1984 the author [Hi 1] improved ( , )  by 
showing that, for n _> 3 

/~2 > n ( * * )  
- - / Z l ,  

- -  4 ( n - -  1 )  
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where/~l is the first eigenvalue of the conformal Laplacian acting on functions. Inequal- 
ities ( . )  and (**) contain information only in the case where the scalar curvature is 
positive. In this paper we prove the following: 

Theorem A. On a compact Riemannian spin manifold ( M n, g) of dimension n >_ 2, 
any eigenvalue ~ of  the Dirac operator to which is attached an eigenspinor ~b satisfies 

A 2 >_ inf(1  S + levi2), 
M 

where S is the scalar curvature of  ( Mn,g) ,  and gO, is the field of symmetric endomor- 
phisms of  the tangent bundle associated with the field of quadratic forms defined on the 

complement of the set of zeroes of  ~, for any vector field X, by 

Qq,(X) = Re (X.  Vx~b, 

Theorem B. On a compact Riemannian spin manifold ( M n, g) of dimension n >_ 3, any 

eigenvalue A of  the Dirac operator to which is attached an eigenspinor ~ satisfies 

A 2 >_ ¼/.tl + inf [g¢[2, 
M 

where I~l is the first eigenvalue of  the Yamabe operator, i.e., 

L : = 4  n - 1  
n _ 2  A + S  

acting on functions. 

Corollary C. Under the same conditions as in Theorem A, one has 

,~2 ~ 1 ~ {Vol (m,g)  }-2/n_k inflgol2, 
t~ 

where tz is a conformal invariant, called the Yamabe number, defined by 

/x := inf f~Sv~ "- inf fMhL(h)vg  
"--  2 " n>2 ~Etgl {VoI(M'g)}  (n-2)/n n>_3 h>0 Ilhll2./<._2) 

Corollary D. For n = 2 ,  under the same conditions as in Theorem A, one has 

2 ~ x ( M )  + i n f l g ¢ [  2 , 
A2 > Area(M) M 

where x (  M) is the Euler-Poincard characteristic of M. 

Proposition E. On a compact Riemannian spin manifold ( Mn,g) of dimension n >_ 3, 
assume that an eigenvalue A of the Dirac operator to which is attached an eigenspinor 
¢ satisfies 

A 2 = 41- /L61 + inf Ig¢l 2 . 
M 



O. Hijazi/Journal of Geometry and Physics 16 (1995) 27-38 29 

Then, [£g,I is constant, and i f  ul denotes an eigenfunction o f  the Yamabe operator 

corresponding to Izl, then f o r  any vector field X 

g( X, £~, ( dul ) - ,ldul ) = g( AX - eg, ( X)  , dul ) = O . 

2. Notations and preliminaries 

Let (M n, g) be an n-dimensional Riemannian spin manifold. The Levi-Civita connec- 
tion on the tangent bundle TM is denoted by x7. The same symbol is used to denote 
its natural extension on the bundle of exterior forms, on the bundle of endomorphisms 
of the tangent bundle, and on. the complex spin bundle ,~M. The spin bundle carries 

a natural Hermitian scalar product denoted by ( , ). The linear isomorphism between 
the algebra of exterior forms and the Clifford algebra allows to consider the action of 
exterior forms on the spin bundle via Clifford multiplication. For any vector field X, 
any k-form a, and any spinor fields ~b and ~p, one has (see [LM]) 

x(,p,~) = (Vx~, ~) + (¢,, Vx~) ,  (1) 

V x ( a "  ~)  = (VxCe) • ¢ + a .  Vx~b, (2) 

(ce. ~,~p) = ( - 1 )  k(k+l)/2 (~ ,a -~p) ,  (3) 

X . a = X A a - t x a ,  (4) 

where "A" is the exterior product and "tx" is the interior product with X. The Dirac 
operator D acting on sections of the spin bundle is locally defined by 

n 

D 
i= l  

with {el . . . . .  e,} a local orthonormal basis of the tangent bundle TM. At any point 
x in M, we choose normal coordinates at this point so that (Vei)(x) = 0 ,  for all 
i C {1 . . . . .  n}. All the computations will be made in such charts. The Dirac operator 
satisfies the Lichnerowicz formula 

V*V = 0 2 - ¼S, (5) 

where ~7" stands for the adjoint of ~7 with respect to the global scalar product. 

3. Modification of the Levi-Civita connection 

Definition 1. Let ~ be a symmetric endomorphism of the tangent bundle. For any tangent 
vector field X and any spinorfield ~, define the modified connection xTe by 

Vex~P := Vx~P + e ( X )  • ¢ .  (6) 

One has the following 
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L e m m a  1. The modified connection V ~ is a metric connection, i.e., for any tangent 
vector field X, and any spinor fields ~ and ~, one has 

x(~,  ~,) = (v~x¢,. ~,) + (¢,, v ~ ) .  

Proof. With the identification of 1-forms with vector fields via the Riemannian metric, 
it is sufficient to use Eq. (2) and Eq. (3) with k = 1. [] 

Lemma 2. The operator XTe*V ~ : F( XM) --* F( XM) is non-negative and formally 
self-adjoint. In particular, on a compact manifold one has 

f (V'*V'~b,~)= f (Ve~ ,V '~ ) ,  
M M 

for all sections of .YM. 

Proof. By definition, it follows that 

n 

~ V e (V ~* VeO, ¢)  ; - ~ ( V e ,  e,O, ¢) 
i=1 

n 

= - - 

i=l 

= div(X) + (Ve, @, V~e,~o), 

where X is the tangent vector field defined by the following condition: 

VY 6 F(TM), g(X, Y) = (VetO, ~). 

I n  fact, at a given point, with respect to normal coordinates, we get for the divergence 
t e r m  

div(X) 

// 

= -- ~--~g(Ve, X, el) 
i=1 

= -~-~e ig(X ,  ei) 
i=1 

= - e i ( V e , O ,  ~'). 
i=l 

This yields Lemma 2 by integration. [] 

Proposition 3. For any linear endomorphism ~ of the tangent bundle, and for any spinor 
field 0, the following identity holds: 

n 

Ive¢12 : = ~(v~,O,v~, ,¢ , )  
i=1 



O. Hijazi/Journal of Geometry and Physics 16 (1995) 27-38 

n 

= I v 0 l  2 + lel 2 1012 - 2 Re ~- -~(g (e i ) .  VeiO, 0 ) .  
i= I  

Proof. Using (3) and (5) with k = 1, it follows that 

lyre,012 = ~-~,(VeiO q- g( e , )  . 0, V~,O + e( ei) . 0) 
i=l i=l 

n n 

= IV012 + ~--~,'(Ve,O, g(ei). 0) + y~(g(e i ) .  0, Ve,0) 
i=l i = |  

n 

"q- Z ( P . ( e i )  " 0, g(ei)  " 0 )  
i=1 

n 

= IVOl 2 - 2 Re Z ( g ( e i ) .  VeiO, O) q-Igl 2 1012. 
i=1 

31 

(7) 

[] 

4. Eigenvalues estimate 

We now show that for an appropriate choice of the symmetric endomorphism g in 
Proposition 3, one gets a sharp estimate of the first eigenvalue of the Dirac operator on 
compact Riemannian manifolds. For this we need the following: 

Definition 4. On the complement of the set of zeroes of a spinorfield 0, define for any 
tangent vector fields X and Y, the symmetric bilinear tensor Q~ by 

Qe(X, Y) = ½ Re (X .  VrO + Y" VxO,0/1012) (8) 

We choose the local orthonorrnal frame {el . . . . .  e,} so that Q¢, is diagonal. For the 
associated field of quadratic forms, it follows that 

Q¢, (ei) = Re (el. V~O, 0/[012 ), 

and trQ¢, = Re(D0,0 /10[2) .  If O is such that DO = A0, then trQ¢, = A. 

Theorem 5. On a compact Riemannian spin manifold ( Mn, g) of dimension n >_ 2, any 
eigenvalue ~ of the Dirac operator to which is attached an eigenspinor O satisfies 

A 2 > in f (¼S+  leol2), (9) 
M 

where S is the scalar curvature of ( M", g), and gO, is the field of symmetric endomor- 
phisms associated with the field of quadratic forms 

Q¢, (ei)  ---- Re (el" VeiO, 0/1012 ) .  

Before giving the proof of Theorem 5, we give the following immediate lemma: 
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Lemma 6. On the space of fields of quadratic forms, F(T*M ® T'M), consider the 
function f defined by 

f (q )  = -2g(q,Q~,) + g(q,q) ,  

where g is the natural extension of the Riemannian metric to F(T*M ® T'M). Then, f 
attains its minimum at q = Q¢,. 

Proof of Theorem 5. Integration of Eq. (7) for g = g¢, together with Lemma 6, gives 
Theorem 6. [] 

Before investigating the limiting case of (9), we compare inequality (9) with previous 
results in this direction. 

Corollary 7 ( [ Fr 1 ] ). Under the same conditions as in Theorem 5, one has 

A 2 > ~ inf S. 
- 4 ( n -  1) M 

(lo) 

Proof. It is sufficient to notice, by the Cauchy-Schwarz inequality, that 

lee[ 2 _> (tree)2 _ A 2 
n n 

[] 

Remark 8. Inequality (10) is of interest only in the case where inf M S is positive, 
while (9) may still give information on the first eigenvalue in the case where inf M S is 
non-positive. 

5. Conformal geometry and eigenvalues estimate 

In this section, we apply the techniques in [Hi 2] and [Hi 3] concerning conformal 
changes of the Riemannian metric to get a sharper estimate than (9) in terms of the 
first eigenvalue of the Yamabe operator. We use the notations and the results in [Hi 2]. 

The main result of this section is the following: 

Theorem 9. On a compact Riemannian spin manifold ( Mn,g) of dimension n > 3, any 
eigenvalue A of the Dirac operator to which is attached an eigenspinor ~ satisfies 

A2 ---~ 41- fl'l + inf [gel 2, (11) 
M 

where/xl is the first eigenvalue of the Yamabe operator, i.e., 

4 n - 1  
L:= ~-Z--~_2,a+ S 

acting on functions, and gq, is the field of symmetric endomorphisms associated with the 
field of quadratic forms 

Qc,(X) = Re (X .  vx¢,¢/1¢,12). 
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Using the Cauchy-Schwarz inequality it follows that 

33 

Corollary 10 ( [ Hi 1 ] ). Under the same conditions as in Theorem 9, any eigenvalue o f  

the Dirac operator satisfies 

,~2 > n 
- - # 1 .  (12) 

- 4 ( n  - 1 )  

The conformal class of g is denoted by [g]. An element in this class is a metric 
such that ~ = eZ"g, for a real function u on M. At a given point x of M, we consider 
a g-orthonormal basis e = {el . . . . .  en} of TxM. The corresponding ~-orthonormal basis 
is denoted by ~ = {e-Uel . . . . .  e - "e ,} .  This correspondence extends to the spin level 
to give an isometry between the corresponding spinor bundles. We agree to put a 
( ) above every object which is naturally associated with the metric ~. Then, for any 
spinorfields ~ and ~o, one has 

(,p,~) = (~,, ~) ,  

where ( , ) denotes the natural Hermitian scalar products on F ( ~ M ) ,  and on F ( . Y M )  

which make an isometry from the isomorphism between these spaces.The Levi-Civita 
connection ~7 is related to ~7 by 

v x ¢ ,  = vx~o - ½ X . d u  .¢, - ½ X ( u ) ~ .  (13) 

According to [Hn, Ba] the Dirac operators satisfy 

-D ( e -(n-l)u/2 ~ ) = e -(n+l)u/2 D e .  (14) 

For D~ = ,~b, one gets D ~ =  Ae -u -~, with q~ = e - ( n - I ) u / 2  ~ .  We denote by Ig~l the 
norm of the field of endomorphisms g~ w.r.t, the metric defined by ~, while Ig~l is the 
norm computed w.r.t, the metric g. 

P r o p o s i t i o n  11. The fol lowing relations hold: 

levi 2 = e-2,  levi 2 = e -2u Ig~,l 2, 

where ~o = e -(n-l)u/2 ~b, and ~ = e2Ug. 

(15) 

Proof. With the help of identity (13) and the definition of Q~(-ei,-~j) , one gets 

a_ff(-~i,-~j ) = 1 R e ( ~ i - ~ j ~ + ~ j c ~ , ~ , W l ~ l  2) 

I e-"  Re (ei - Vej-~ Jr e j  7 ~ei-~,  -~/[-~l 2 ) = 7  

1 e-U I = 7  Re(-ei-  [ V e J q ~ - 2 e j ' d u ' ~ ° - ½  e j (u ) -~]  

+ ~ j -  [ Ve/p - ½ el" du .  ~o - ½ ei(u)  ~]  ,WIl l2) ,  

which, after using ei . e j  + ej • ei = --2t~i j  and (3), gives with k = 1 

Q-ff('ei,'ej ) = ½ e -u Re ( e i ' -  ~ej~ 0 "q- e j -  v-~,~,WI~I 2) 
7 e  R e ( e i "  V e j g + e j "  Ve,9,-ff/]-~12). 

(16) 
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Since the isomorphism between the spin bundles associated with the metrics g and ~ is 
an isometry w.r.t, the associated Hermitian scalar product, it follows that 

Q_ff(~i,.~j ) = 1 e-U Re (ei" ~ejq ~ q- e j .  ~Teiq~, q~/Icp[ 2) 

= e -u Q~(ei, ej)  . (17) 

On the other hand, since ~o = e -<n-l)u/2 ~b, identity (3) implies 

Q~(ei, ej)  = ½ Re (e i .  ~Tej~O + e j .  Vei~O,  /1 12) 
= l e - ( n - l ) u  R e ( e / .  ~7ej ,~ "4- e j .  Ve,~,~/l~ol 2) 

- ! ( n  - 1) e -<n-1)u R e ( e j ( u )  ei . ¢  + e i ( u )  ej 4 

I R e ( e i  V e j ¢  + e j  ~7e,¢,¢/1¢12) 
= Q¢, (el, ej ) ,  

hence, with (17), one gets 

Q~(-di, ~j) = e -u Q¢, (el, e j ) .  (18) 

To finish the proof of Proposition 11, we compare e~ with e~. By (18) and the relation 

between ~ and Q¢,, one gets 

-g ( £-~ ( e i ) , e j ) ~. a-ff ( ~ i , ~ j ) 

= e-UQ¢, (ei, ej)  

= e-"g(e¢, (ei) ,  e j ) .  

The above identity implies 

e~ = e -u e¢,, 

which gives (15). [] 

Proof o f  Theorem 9. Proposition 3 with respect to the metric ~ = e2Ug, applied to the 

spinorfield ~ and for £ = ~ gives after integration 

f l~ea~12 = f l-fi-Cl2- f ( ¼-g+lgw]2),-¢, 2, (19) 

M M M 

where S is the scalar curvature of (M",~) .  For ~o = e -~-1)~/2 ~p and D~p = a~p, one 
gets D ~ = ae -~ ~, which when combined with Proposition 11, implies 

f I~e'~ - ~ [ 2 = / [  a2__ (¼ -~e2U q_ [g~.12 e2U)] e-2U[~12 

M M 

f [A 2 - (¼~e 2" + Ig¢,12) ] e -2" I~12. (20) 

M 
For any function u, Eq. (20) implies 

a 2 _> in f (¼Se  2u + levi 2) 
M 
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_> ¼ inf(  Se  2u) + infle~l 2 
M M 

> ¼ sup inf (  S e  2") + inf levi 2. 
u M M 

The relation between S and S for ~ = e2Ug = h4/(n-2)g is given by 

4 n -  1 h _ l A h +  S h - l L ( h )  := n -  2 

= -S h4/(n - 2) = S e 2" = 2(n  - 1)Au -- (n -- 1)(n -- 2) Idul 2 + S. 

For u = u~ the function corresponding to an eigenfunction hi of  L associated with its 

first eigenvalue/zl ,  it follows that/xl = -Se 2u~. In fact, one has 

/zl = sup inf(  -Se 2u) , 
u M 

and the supremum is achieved by a function u, if and only if u is an eigenfunction of  

the Yamabe operator associated with ~l  (see [Hi 3] ). [] 

Coro l la ry  12. Under the same conditions as in Theorem 9, one has 

l {Vol (M,g)}  -2/n + inflg¢[ 2, (21) 
u 

where tx is a conformal invariant, called the Yamabe number, defined by 

fM -Su~ fM hL( h )vg 
/z := inf := inf ,, ,,9 • (22) 

n>_2 ~e[g] {Vol (M,g)}  (n-2)/n n>3 h>0 IIhlG/(.-2) 

Proof. It is sufficient to use the HOlder inequality to show that 

Ix1 >_ tz {Vol( M,g)  } -2/~, (23) 

which, when combined with (11) ,  yields (21).  [] 

Coro l la ry  13. For n = 2 ,  under the same conditions as in Theorem 9, one has 

A 2 > 2 ~ x ( M )  +infle¢,] 2 (24) 
- Area (M)  t,t ' 

where x (  M) is the Euler-Poincard characteristic of  M. 

Proof For n = 2, by (22) ,  the Gauss-Bonnet formula, and the variation of  the scalar 
curvature in a conformal class, it follows that 

M M M 

where Vg is the volume element attached with g (compare with [Ba 1] and [Hi 3] ) . []  
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6. Manifolds with small eigenvalues 

We start with the following proposition, which will be used in the investigation of the 
limiting case of ( 11 ). 

Proposition 14. For a non-trivial spinor ~, if xTeoO - O ,  then [~b[ 2 is constant, and 

(trg 0 ) :  := f 2  = I S -I- l eo l  z , ( 2 5 )  

grad f = - d i v  gO • (26) 

Proof. Lemma 1 and the condition Ve~b = 0 imply that I~/,[ 2 is constant. The curvature 
tensor on the spin bundle associated with the connection x7 (resp. x7 e~ ) is denoted by 
R (resp. R e~ ). One easily gets the following relation: 

R~ir¢ = Rx, r ~  + d g o ( X , Y )  • ¢ + [eo(X) ,eo(Y)]  • ¢ ,  (27) 

where dg 0 is a 2-form with values in F(TM)  and [X, Y] = X. Y - Y. X. Taking Y = ei 
in (27) and performing its Clifford multiplication by ei yields 

~-'~ei. R~e,~b = - ½  R i c ( X ) . d / +  Z e i . d g o ( X ,  ei) .~b 
t" i 

+ ~f'~ei" [go(X) ,g¢(ei)]  • ¢ ,  (28) 
i 

where Ric denotes the Ricci endomorphism on the tangent bundle. We then decompose 
the last two terms in (28) using (4) in order to separate, when one takes the scalar 
product of (28) with ¢,, real functions from imaginary ones. With the help of (4),  it 
follows that 

~ ~  ei . dgo( X, ei) . ~ 
i 

= y~ei. [ ( V x e ~ p ) ( e i )  - -  ( V e i e ~ b ) ( X ) ]  • ~ll 

i 

= Z [ e i  A ( V x e ¢ ) ( e l )  -- ei A (Ve/e¢ , )  ( X )  ] • ~// 
i 

- Z [ ( V x g c , ) ( e i ,  ei) - (xTe, go)(X,  ei)] • ~b 
i 

= ~ [ e i / x  dec(X, e~) ] • ~p - [X(tre o) + diveo (X)]~p. (29) 

For the last term, since X-Y + Y. X = - 2 g ( X , Y ) ,  one gets 

~ ei" [eo(X),go(ei) ] • 
i 

= ~-~ei" [g0(X) • goei) - eo(e~), go(x)] • ¢ 
i 
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= -- ~ [go(X) .e i .  go(ei) + 2g(go(X) , e i ) ]  • 
i 

- ~ e i  • go(ei) "go(X) • ~b 
i 

= 2(trgo) go(X) • d / -  2 ~-~g(X, go(ei))  go(ei) • 0 .  (30) 
i 

Combining Eqs. (28), (29) and (30), one gets 

!2 Ric(X) • ~p = ~ [ei A dgo(X, el) ] • ~b + 2 (trgo) go (X). ¢ 
i 

- 2 ~'~g(X,  gO (el))  gO (el) • • - (X(trg 0) + dive 0 (X))~p. (31) 
i 

Taking the scalar curvature of (31) with ~p, and after separating real and imaginary 
parts, yields for every field X the relations 

X(trg¢) = -divgo(X), 

12 Ric(X) • ~p = ~ [ei A dgo(X, el)] • ¢ + 2 (tre0) go(X) • ¢ 
i 

- 2 ~ - ~ g ( X ,  g o ( e ; ) )  e , ( e i )  • ¢ .  (33) 
i 

Identity (32) is equivalent to (26). Clifford multiplication of (33) with ej, and for 
X = e.i, gives 

- I  s ~  = ~ ei" (ej A dg¢(ei, e j ) )  • ~b - 2(trg~,)2ff + 211eo112¢,, (34) 
i , j  

Identity (4) implies 

7 ~ e i ' ( e j A d ' c , ( e i ,  e j ) ) ' O  = (~-~.. e i A e j A d ' o ( e i ,  e j ) )  "~b 
i , j  \ t,J 

-- ~ te;(ej A deo(ei ,ej)  ) • ¢ .  (35) 
i , j  

The first term of the r.h.s, of (35) is zero since £~, is symmetric, and the last term is the 
Clifford multiplication of ~b with a vector field, which gives an imaginary function when 
taking its scalar product with ~p. Hence the scalar product of (34) with ~b is precisely 
(25). [] 

We now study the limiting case of ( 11 ). 

Proposition 15. O n  a compact Riemannian spin manifold ( M  n, g ) ,  assume that an 
eigenvalue A of the Dirac operator to which is attached an eigenspinor d/ satisfies 

a2 = I Pd + inf Igol = . 
M 
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Then, 1~¢,1 is constant, and if  ul denotes an eigenfunction of  the Yamabe operator 

corresponding to t.q, then for  any vector field X 

g(X,  e~, (du l )  - adu~ ) = g ( a X  - e~, ( X ) ,  du~ ) = 0.  (35) 

Proof. If equality in (11) holds, then Eq. (20) with u = ul gives levi is constant, and 

~e7 ~ _ 0. By Proposition 14, we have 

(tr£~)2 :=f2 = l ~ d _  i£~12 ' (36 )  

grad f = - div £~. (37 )  

Eq.  (36 )  together  wi th  Propos i t ion  11, imply  equal i ty  in (11 ) .  It is s t ra ightforward to 

see that Propos i t ion  11, combined  with (37 ) ,  gives (35 ) .  []  
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